New to Gradio? Start here: Getting Started
See the Release History
gradio.Gallery(Β·Β·Β·)
Behavior
As input: this component does *not* accept input.
As output: expects a list of images in any format, List[numpy.array | PIL.Image | str | pathlib.Path], or a List of (image, str caption) tuples and displays them.
Initialization
Parameter | Description |
---|---|
value
list[np.ndarray | _Image.Image | str | Path | tuple] | Callable | None default: None |
List of images to display in the gallery by default. If callable, the function will be called whenever the app loads to set the initial value of the component. |
label
str | None default: None |
component name in interface. |
every
float | None default: None |
If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. |
show_label
bool default: True |
if True, will display label. |
container
bool default: True |
If True, will place the component in a container - providing some extra padding around the border. |
scale
int | None default: None |
relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer. |
min_width
int default: 160 |
minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. |
visible
bool default: True |
If False, component will be hidden. |
elem_id
str | None default: None |
An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. |
elem_classes
list[str] | str | None default: None |
An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. |
columns
int | tuple | None default: 2 |
Represents the number of images that should be shown in one row, for each of the six standard screen sizes (<576px, <768px, <992px, <1200px, <1400px, >1400px). if fewer that 6 are given then the last will be used for all subsequent breakpoints |
rows
int | tuple | None default: None |
Represents the number of rows in the image grid, for each of the six standard screen sizes (<576px, <768px, <992px, <1200px, <1400px, >1400px). if fewer that 6 are given then the last will be used for all subsequent breakpoints |
height
str | None default: None |
Height of the gallery. |
preview
bool | None default: None |
If True, will display the Gallery in preview mode, which shows all of the images as thumbnails and allows the user to click on them to view them in full size. |
object_fit
Literal['contain', 'cover', 'fill', 'none', 'scale-down'] | None default: None |
CSS object-fit property for the thumbnail images in the gallery. Can be "contain", "cover", "fill", "none", or "scale-down". |
allow_preview
bool default: True |
If True, images in the gallery will be enlarged when they are clicked. Default is True. |
show_share_button
bool | None default: None |
If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise. |
Shortcuts
Class | Interface String Shortcut | Initialization |
---|---|---|
|
"gallery" |
Uses default values |
Demos
# This demo needs to be run from the repo folder.
# python demo/fake_gan/run.py
import random
import gradio as gr
def fake_gan():
images = [
(random.choice(
[
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
"https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
"https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80",
]
), f"label {i}" if i != 0 else "label" * 50)
for i in range(3)
]
return images
with gr.Blocks() as demo:
with gr.Column(variant="panel"):
with gr.Row(variant="compact"):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
container=False,
)
btn = gr.Button("Generate image").style(full_width=False)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(columns=[2], rows=[2], object_fit="contain", height="auto")
btn.click(fake_gan, None, gallery)
if __name__ == "__main__":
demo.launch()
Methods
gradio.Gallery.select(fn, Β·Β·Β·)
Description
Event listener for when the user selects image within Gallery. Uses event data gradio.SelectData to carry `value` referring to caption of selected image, and `index` to refer to index. See EventData documentation on how to use this event data.
Agruments
Parameter | Description |
---|---|
fn
Callable | None required |
the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. |
inputs
Component | list[Component] | set[Component] | None default: None |
List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. |
outputs
Component | list[Component] | None default: None |
List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. |
api_name
str | None | Literal[False] default: None |
Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name. |
status_tracker
None default: None |
|
scroll_to_output
bool default: False |
If True, will scroll to output component on completion |
show_progress
Literal['full', 'minimal', 'hidden'] default: "full" |
If True, will show progress animation while pending |
queue
bool | None default: None |
If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. |
batch
bool default: False |
If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component. |
max_batch_size
int default: 4 |
Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) |
preprocess
bool default: True |
If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component). |
postprocess
bool default: True |
If False, will not run postprocessing of component data before returning 'fn' output to the browser. |
cancels
dict[str, Any] | list[dict[str, Any]] | None default: None |
A list of other events to cancel when This listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. |
every
float | None default: None |
Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled. |