New to Gradio? Start here: Getting Started
See the Release History
gradio.Examples(examples, inputs, ยทยทยท)
Description
This class is a wrapper over the Dataset component and can be used to create Examples for Blocks / Interfaces. Populates the Dataset component with examples and assigns event listener so that clicking on an example populates the input/output components. Optionally handles example caching for fast inference.
Initialization
Parameter | Description |
---|---|
examples
list[Any] | list[list[Any]] | str required |
example inputs that can be clicked to populate specific components. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs. |
inputs
IOComponent | list[IOComponent] required |
the component or list of components corresponding to the examples |
outputs
IOComponent | list[IOComponent] | None default: None |
optionally, provide the component or list of components corresponding to the output of the examples. Required if `cache` is True. |
fn
Callable | None default: None |
optionally, provide the function to run to generate the outputs corresponding to the examples. Required if `cache` is True. |
cache_examples
bool default: False |
if True, caches examples for fast runtime. If True, then `fn` and `outputs` need to be provided |
examples_per_page
int default: 10 |
how many examples to show per page. |
label
str | None default: "Examples" |
the label to use for the examples component (by default, "Examples") |
elem_id
str | None default: None |
an optional string that is assigned as the id of this component in the HTML DOM. |
run_on_click
bool default: False |
if cache_examples is False, clicking on an example does not run the function when an example is clicked. Set this to True to run the function when an example is clicked. Has no effect if cache_examples is True. |
preprocess
bool default: True |
if True, preprocesses the example input before running the prediction function and caching the output. Only applies if cache_examples is True. |
postprocess
bool default: True |
if True, postprocesses the example output after running the prediction function and before caching. Only applies if cache_examples is True. |
api_name
str | None | Literal[False] default: False |
Defines how the event associated with clicking on the examples appears in the API docs. Can be a string, None, or False. If False (default), the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name. |
batch
bool default: False |
If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. Used only if cache_examples is True. |
Demos
import gradio as gr
import os
def combine(a, b):
return a + " " + b
def mirror(x):
return x
with gr.Blocks() as demo:
txt = gr.Textbox(label="Input", lines=2)
txt_2 = gr.Textbox(label="Input 2")
txt_3 = gr.Textbox(value="", label="Output")
btn = gr.Button(value="Submit")
btn.click(combine, inputs=[txt, txt_2], outputs=[txt_3])
with gr.Row():
im = gr.Image()
im_2 = gr.Image()
btn = gr.Button(value="Mirror Image")
btn.click(mirror, inputs=[im], outputs=[im_2])
gr.Markdown("## Text Examples")
gr.Examples(
[["hi", "Adam"], ["hello", "Eve"]],
[txt, txt_2],
txt_3,
combine,
cache_examples=True,
)
gr.Markdown("## Image Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "lion.jpg")],
inputs=im,
outputs=im_2,
fn=mirror,
cache_examples=True,
)
if __name__ == "__main__":
demo.launch()